sábado, 9 de fevereiro de 2019







x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll







como ocorre o efeito fotoelétrico, e conforme a sua intensidade se tem outros efeitos secundários sobre condutividade térmica e elétrica, elestrostática, momentum magnético, quantico e elétrico, interações e transformações, decaimentos e emissões, absorções, energia potencial, energia cinética e outros. e conforme o sistema decadimensional e categorial que Graceli, e que tem efeitos também sobre o próprio efeito fotoelétrico.

= + V cte, e, mm, q, e, i, t, d, ea, epc,

x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D








efeito fotoelétrico é a emissão de elétrons por um material, geralmente metálico, quando exposto a uma radiação eletromagnética(como a luz) de frequência suficientemente alta, que depende do material, como por exemplo a radiação ultravioleta. Ele pode ser observado quando a luz incide numa placa de metal, arrancando elétrons da placa. Os elétrons ejetados são denominados fotoelétrons.[1]
Observado pela primeira vez por A. E. Becquerel em 1839 e confirmado por Heinrich Hertz em 1887,[2] o fenômeno é também conhecido por "efeito Hertz",[3][4] não sendo porém este termo de uso comum.
De acordo com a teoria eletromagnética clássica, o efeito fotoelétrico poderia ser atribuído à transferência de energia da luz para um elétron. Nessa perspectiva, uma alteração na intensidade da luz induziria mudanças na energia cinética dos elétrons emitidos do metal. Além disso, de acordo com essa teoria, seria esperado que uma luz suficientemente fraca mostrasse um intervalo de tempo entre o brilho inicial de sua luz e a emissão subsequente de um elétron. No entanto, os resultados experimentais não se correlacionaram com nenhuma das duas previsões feitas pela teoria clássica.
Em vez disso, os elétrons são desalojados apenas pelo impacto dos fótons quando esses fótons atingem ou excedem uma frequência limite (energia). Abaixo desse limite, nenhum elétron é emitido do material, independentemente da intensidade da luz ou do tempo de exposição à luz (raramente, um elétron irá escapar absorvendo dois ou mais quanta; no entanto, isso é extremamente raro porque ao absorver quanta suficiente para escapar, o elétron provavelmente terá emitido o resto dos quanta absorvidos). Para dar sentido ao fato de que a luz pode ejetar elétrons mesmo que sua intensidade seja baixa, Albert Einstein propôs que um feixe de luz não é uma onda que se propaga através do espaço, mas uma coleção de pacotes de ondas discretas (fótons), cada um com energia. Isso esclareceu a descoberta anterior de Max Planck da relação de Planck (E = hν), ligando energia (E) e frequência (ν) como decorrentes da quantização de energia. O fator h é conhecido como a constante de Planck.[5][6][1] A explicação satisfatória para o efeito fotoelétrico, dada em 1905 por Albert Einstein, deu ao cientista alemão o prêmio Nobel de Física de 1921.
Tomemos um exemplo: a luz vermelha de baixa frequência estimula os elétrons para fora de uma peça de metal; na visão clássica, a luz é uma onda contínua cuja energia está espalhada sobre a onda. Todavia, quando a luz fica mais intensa, mais elétrons são ejetados, contradizendo, assim a visão da física clássica que sugere que os mesmos deveriam se mover mais rápido (energia cinética) do que as ondas incidentes.
Quando a luz incidente é de cor azul, essa mudança resulta em elétrons muito mais rápidos. A razão é que a luz pode se comportar não apenas como ondas contínuas, mas também como feixes discretos de energia chamados de fótons. Um fóton azul, por exemplo, contém mais energia do que um fóton vermelho. Assim, o fóton azul age essencialmente como uma "bola de bilhar" com mais energia, desta forma transmitindo maior movimento a um elétron. Esta interpretação corpuscular da luz também explica por que a maior intensidade aumenta o número de elétrons ejetados - com mais fótons colidindo no metal, mais elétrons têm probabilidade de serem atingidos.
Aumentar a intensidade de radiação que provoca o efeito fotoelétrico não aumenta a velocidade dos fotoelétrons, mas aumenta o número de fotoelétrons. Para se aumentar a velocidade dos fotoelétrons, é necessário excitar a placa com radiações de frequências maiores e, portanto, energias mais elevadas.[1]

Equações[editar | editar código-fonte]

Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:
Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido
Mais detalhes em: Energia do fóton
Algebricamente:
Onde:
  • h é a constante de Planck,
  • f é a frequência do foton incidente,
  •  é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
  •  é a energia cinética máxima dos elétrons expelidos,
  • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
  • m é a massa de repouso do elétron expelido, e
  • vm é a velocidade dos elétrons expelidos.
Notas:
Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.

Aplicações[editar | editar código-fonte]

  • Controle Remoto
Os controles remotos, games e artifícios digitais estão cada vez mais presentes nessa era considerada digital, então é viável e interessante que o Efeito Fotoelétrico seja observado, para uma melhor a compreensão, através de um simulador. O controle remoto, por exemplo, pode ser associado à fonte de luz presente no simulador, pois emite um feixe de luz de determinada frequência que aciona o dispositivo fotossensível presente nos aparelhos controlados por ele.[7]
  • Cinema
Graças ao efeito fotoelétrico, tornou-se possível o cinema falado, assim como a transmissão de imagens animadas (televisão). O emprego de aparelhos fotoelétricos permitiu construir uma maquinaria capaz de produzir peças sem intervenção alguma do homem. Os aparelhos cujos funcionamentos se assentam no aproveitamento do efeito fotoelétrico controlam o tamanho das peças melhor do que pode fazer qualquer operário, permitem acender e desligar automaticamente a iluminação de ruas, os faróis, etc. Tudo isto se tornou possível devido à invenção de aparelhos especiais, chamados células fotoelétricas, em que a energia da luz controla a energia da corrente elétrica ou se transforma em corrente elétrica[8]
  • Visão Noturna
O equipamento de visão noturna economicamente mais acessível, mais leve, menor, mais ergonométrico, mais confiável, com campo de visão maior, com alto desempenho sob baixas condições de iluminação e que possa ser utilizado tanto de noite quanto de dia atualmente é feito com Tubos Intensificadores de Imagem (TII). Os intensificadores de luz baseiam-se no efeito fotoelétrico demonstrado por Albert Einstein em 1905, no qual um fóton ao incidir sobre determinados materiais é capaz de provocar a emissão de um elétron, denominado fotoelétron. Este efeito fotoelétrico ocorre justamente no fotocatodo. Portanto, a luz (fótons) que chega(m) ao fotocatodo é(são) convertida(os) em fotoelétrons. Estes fotoelétrons são acelerados pelo campo elétrico e para os TIl da 2ª geração em diante são multiplicados na placa de microcanais. Esta multiplicação de elétrons ocorre da seguinte forma: o campo elétrico existente entre o fotocatodo e a placa de microcanais direciona os elétrons para a placa, de modo que ao entrarem nos microcanais colidem com as paredes semicondutoras. Esta colisão gera elétrons secundários que caminham dentro dos microcanais sob influência de um intenso campo elétrico aplicado ao longo dos microcanais. Mais colisões geram mais elétrons e este efeito de avalanche produz o ganho (amplificação) do TIl. Quando alcançam o final da placa de microcanais, os elétrons são acelerados através de uma pequena separação até atingirem a tela de fósforo. Na tela de fósforo os elétrons multiplicados colidem com alta energia e são convertidos em fótons, gerando uma imagem. Após a tela de fósforo está a janela de fibras ópticas, que conduz a imagem gerada para a posição focal desejada pelo restante do sistema óptico, e, quando necessário, inverte a imagem







Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].



x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll







como ocorre o efeito fotoelétrico, e conforme a sua intensidade se tem outros efeitos secundários sobre condutividade térmica e elétrica, elestrostática, momentum magnético, quantico e elétrico, interações e transformações, decaimentos e emissões, absorções, energia potencial, energia cinética e outros. e conforme o sistema decadimensional e categorial que Graceli, e que tem efeitos também sobre o próprio efeito fotoelétrico.

= + V cte, e, mm, q, e, i, t, d, ea, epc,

x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D








efeito fotoelétrico é a emissão de elétrons por um material, geralmente metálico, quando exposto a uma radiação eletromagnética(como a luz) de frequência suficientemente alta, que depende do material, como por exemplo a radiação ultravioleta. Ele pode ser observado quando a luz incide numa placa de metal, arrancando elétrons da placa. Os elétrons ejetados são denominados fotoelétrons.[1]
Observado pela primeira vez por A. E. Becquerel em 1839 e confirmado por Heinrich Hertz em 1887,[2] o fenômeno é também conhecido por "efeito Hertz",[3][4] não sendo porém este termo de uso comum.
De acordo com a teoria eletromagnética clássica, o efeito fotoelétrico poderia ser atribuído à transferência de energia da luz para um elétron. Nessa perspectiva, uma alteração na intensidade da luz induziria mudanças na energia cinética dos elétrons emitidos do metal. Além disso, de acordo com essa teoria, seria esperado que uma luz suficientemente fraca mostrasse um intervalo de tempo entre o brilho inicial de sua luz e a emissão subsequente de um elétron. No entanto, os resultados experimentais não se correlacionaram com nenhuma das duas previsões feitas pela teoria clássica.
Em vez disso, os elétrons são desalojados apenas pelo impacto dos fótons quando esses fótons atingem ou excedem uma frequência limite (energia). Abaixo desse limite, nenhum elétron é emitido do material, independentemente da intensidade da luz ou do tempo de exposição à luz (raramente, um elétron irá escapar absorvendo dois ou mais quanta; no entanto, isso é extremamente raro porque ao absorver quanta suficiente para escapar, o elétron provavelmente terá emitido o resto dos quanta absorvidos). Para dar sentido ao fato de que a luz pode ejetar elétrons mesmo que sua intensidade seja baixa, Albert Einstein propôs que um feixe de luz não é uma onda que se propaga através do espaço, mas uma coleção de pacotes de ondas discretas (fótons), cada um com energia. Isso esclareceu a descoberta anterior de Max Planck da relação de Planck (E = hν), ligando energia (E) e frequência (ν) como decorrentes da quantização de energia. O fator h é conhecido como a constante de Planck.[5][6][1] A explicação satisfatória para o efeito fotoelétrico, dada em 1905 por Albert Einstein, deu ao cientista alemão o prêmio Nobel de Física de 1921.
Tomemos um exemplo: a luz vermelha de baixa frequência estimula os elétrons para fora de uma peça de metal; na visão clássica, a luz é uma onda contínua cuja energia está espalhada sobre a onda. Todavia, quando a luz fica mais intensa, mais elétrons são ejetados, contradizendo, assim a visão da física clássica que sugere que os mesmos deveriam se mover mais rápido (energia cinética) do que as ondas incidentes.
Quando a luz incidente é de cor azul, essa mudança resulta em elétrons muito mais rápidos. A razão é que a luz pode se comportar não apenas como ondas contínuas, mas também como feixes discretos de energia chamados de fótons. Um fóton azul, por exemplo, contém mais energia do que um fóton vermelho. Assim, o fóton azul age essencialmente como uma "bola de bilhar" com mais energia, desta forma transmitindo maior movimento a um elétron. Esta interpretação corpuscular da luz também explica por que a maior intensidade aumenta o número de elétrons ejetados - com mais fótons colidindo no metal, mais elétrons têm probabilidade de serem atingidos.
Aumentar a intensidade de radiação que provoca o efeito fotoelétrico não aumenta a velocidade dos fotoelétrons, mas aumenta o número de fotoelétrons. Para se aumentar a velocidade dos fotoelétrons, é necessário excitar a placa com radiações de frequências maiores e, portanto, energias mais elevadas.[1]

Equações[editar | editar código-fonte]

Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:
Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido
Mais detalhes em: Energia do fóton
Algebricamente:
Onde:
  • h é a constante de Planck,
  • f é a frequência do foton incidente,
  •  é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
  •  é a energia cinética máxima dos elétrons expelidos,
  • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
  • m é a massa de repouso do elétron expelido, e
  • vm é a velocidade dos elétrons expelidos.
Notas:
Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.

Aplicações[editar | editar código-fonte]

  • Controle Remoto
Os controles remotos, games e artifícios digitais estão cada vez mais presentes nessa era considerada digital, então é viável e interessante que o Efeito Fotoelétrico seja observado, para uma melhor a compreensão, através de um simulador. O controle remoto, por exemplo, pode ser associado à fonte de luz presente no simulador, pois emite um feixe de luz de determinada frequência que aciona o dispositivo fotossensível presente nos aparelhos controlados por ele.[7]
  • Cinema
Graças ao efeito fotoelétrico, tornou-se possível o cinema falado, assim como a transmissão de imagens animadas (televisão). O emprego de aparelhos fotoelétricos permitiu construir uma maquinaria capaz de produzir peças sem intervenção alguma do homem. Os aparelhos cujos funcionamentos se assentam no aproveitamento do efeito fotoelétrico controlam o tamanho das peças melhor do que pode fazer qualquer operário, permitem acender e desligar automaticamente a iluminação de ruas, os faróis, etc. Tudo isto se tornou possível devido à invenção de aparelhos especiais, chamados células fotoelétricas, em que a energia da luz controla a energia da corrente elétrica ou se transforma em corrente elétrica[8]
  • Visão Noturna
O equipamento de visão noturna economicamente mais acessível, mais leve, menor, mais ergonométrico, mais confiável, com campo de visão maior, com alto desempenho sob baixas condições de iluminação e que possa ser utilizado tanto de noite quanto de dia atualmente é feito com Tubos Intensificadores de Imagem (TII). Os intensificadores de luz baseiam-se no efeito fotoelétrico demonstrado por Albert Einstein em 1905, no qual um fóton ao incidir sobre determinados materiais é capaz de provocar a emissão de um elétron, denominado fotoelétron. Este efeito fotoelétrico ocorre justamente no fotocatodo. Portanto, a luz (fótons) que chega(m) ao fotocatodo é(são) convertida(os) em fotoelétrons. Estes fotoelétrons são acelerados pelo campo elétrico e para os TIl da 2ª geração em diante são multiplicados na placa de microcanais. Esta multiplicação de elétrons ocorre da seguinte forma: o campo elétrico existente entre o fotocatodo e a placa de microcanais direciona os elétrons para a placa, de modo que ao entrarem nos microcanais colidem com as paredes semicondutoras. Esta colisão gera elétrons secundários que caminham dentro dos microcanais sob influência de um intenso campo elétrico aplicado ao longo dos microcanais. Mais colisões geram mais elétrons e este efeito de avalanche produz o ganho (amplificação) do TIl. Quando alcançam o final da placa de microcanais, os elétrons são acelerados através de uma pequena separação até atingirem a tela de fósforo. Na tela de fósforo os elétrons multiplicados colidem com alta energia e são convertidos em fótons, gerando uma imagem. Após a tela de fósforo está a janela de fibras ópticas, que conduz a imagem gerada para a posição focal desejada pelo restante do sistema óptico, e, quando necessário, inverte a imagem